Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Changes in the volume, rate, and timing of the snowmelt water pulse have profound implications for seasonal soil moisture, evapotranspiration (ET), groundwater recharge, and downstream water availability, especially in the context of climate change. Here, we present an empirical analysis of water available for runoff using five eddy covariance towers located in continental montane forests across a regional gradient of snow depth, precipitation seasonality, and aridity. We specifically investigated how energy‐water asynchrony (i.e., snowmelt timing relative to atmospheric demand), surface water input intensity (rain and snowmelt), and observed winter ET (winter AET) impact multiple water balance metrics that determine water available for runoff (WAfR). Overall, we found that WAfR had the strongest relationship with energy‐water asynchrony (adjustedr2 = 0.52) and that winter AET was correlated to total water year evapotranspiration but not to other water balance metrics. Stepwise regression analysis demonstrated that none of the tested mechanisms were strongly related to the Budyko‐type runoff anomaly (highest adjustedr2 = 0.21). We, therefore, conclude that WAfR from continental montane forests is most sensitive to the degree of energy‐water asynchrony that occurs. The results of this empirical study identify the physical mechanisms driving variability of WAfR in continental montane forests and are thus broadly relevant to the hydrologic management and modelling communities.more » « less
-
Abstract We examined the seasonality of photosynthesis in 46 evergreen needleleaf (evergreen needleleaf forests (ENF)) and deciduous broadleaf (deciduous broadleaf forests (DBF)) forests across North America and Eurasia. We quantified the onset and end (StartGPPand EndGPP) of photosynthesis in spring and autumn based on the response of net ecosystem exchange of CO2to sunlight. To test the hypothesis that snowmelt is required for photosynthesis to begin, these were compared with end of snowmelt derived from soil temperature. ENF forests achieved 10% of summer photosynthetic capacity ∼3 weeks before end of snowmelt, while DBF forests achieved that capacity ∼4 weeks afterward. DBF forests increased photosynthetic capacity in spring faster (1.95% d−1) than ENF (1.10% d−1), and their active season length (EndGPP–StartGPP) was ∼50 days shorter. We hypothesized that warming has influenced timing of the photosynthesis season. We found minimal evidence for long‐term change in StartGPP, EndGPP, or air temperature, but their interannual anomalies were significantly correlated. Warmer weather was associated with earlier StartGPP(1.3–2.5 days °C−1) or later EndGPP(1.5–1.8 days °C−1, depending on forest type and month). Finally, we tested whether existing phenological models could predict StartGPPand EndGPP. For ENF forests, air temperature‐ and daylength‐based models provided best predictions for StartGPP, while a chilling‐degree‐day model was best for EndGPP. The root mean square errors (RMSE) between predicted and observed StartGPPand EndGPPwere 11.7 and 11.3 days, respectively. For DBF forests, temperature‐ and daylength‐based models yielded the best results (RMSE 6.3 and 10.5 days).more » « less
-
na (Ed.)Environmental observation networks, such as AmeriFlux, are foundational for monitoring ecosystem response to climate change, management practices, and natural disturbances; however, their effectiveness depends on their representativeness for the regions or continents. We proposed an empirical, time series approach to quantify the similarity of ecosystem fluxes across AmeriFlux sites. We extracted the diel and seasonal characteristics (i.e., amplitudes, phases) from carbon dioxide, water vapor, energy, and momentum fluxes, which reflect the effects of climate, plant phenology, and ecophysiology on the observations, and explored the potential aggregations of AmeriFlux sites through hierarchical clustering. While net radiation and temperature showed latitudinal clustering as expected, flux variables revealed a more uneven clustering with many small (number of sites < 5), unique groups and a few large (> 100) to intermediate (15–70) groups, highlighting the significant ecological regulations of ecosystem fluxes. Many identified unique groups were from under-sampled ecoregions and biome types of the International Geosphere-Biosphere Programme (IGBP), with distinct flux dynamics compared to the rest of the network. At the finer spatial scale, local topography, disturbance, management, edaphic, and hydrological regimes further enlarge the difference in flux dynamics within the groups. Nonetheless, our clustering approach is a data-driven method to interpret the AmeriFlux network, informing future cross-site syntheses, upscaling, and model-data benchmarking research. Finally, we highlighted the unique and underrepresented sites in the AmeriFlux network, which were found mainly in Hawaii and Latin America, mountains, and at under- sampled IGBP types (e.g., urban, open water), motivating the incorporation of new/unregistered sites from these groups.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract. The flow of carbon through terrestrial ecosystems and the response toclimate are critical but highly uncertain processes in the global carboncycle. However, with a rapidly expanding array of in situ and satellitedata, there is an opportunity to improve our mechanistic understanding ofthe carbon (C) cycle's response to land use and climate change. Uncertaintyin temperature limitation on productivity poses a significant challenge topredicting the response of ecosystem carbon fluxes to a changing climate.Here we diagnose and quantitatively resolve environmental limitations onthe growing-season onset of gross primary production (GPP) using nearly 2 decades of meteorological and C flux data (2000–2018) at a subalpineevergreen forest in Colorado, USA. We implement the CARbonDAta-MOdel fraMework (CARDAMOM) model–datafusion network to resolve the temperature sensitivity of spring GPP. Tocapture a GPP temperature limitation – a critical component of the integratedsensitivity of GPP to temperature – we introduced a cold-temperature scalingfunction in CARDAMOM to regulate photosynthetic productivity. We found thatGPP was gradually inhibited at temperatures below 6.0 ∘C (±2.6 ∘C) and completely inhibited below −7.1 ∘C(±1.1 ∘C). The addition of this scaling factor improvedthe model's ability to replicate spring GPP at interannual and decadal timescales (r=0.88), relative to the nominal CARDAMOM configuration (r=0.47), and improved spring GPP model predictability outside of the dataassimilation training period (r=0.88). While cold-temperaturelimitation has an important influence on spring GPP, it does not have asignificant impact on integrated growing-season GPP, revealing that otherenvironmental controls, such as precipitation, play a more important role inannual productivity. This study highlights growing-season onset temperatureas a key limiting factor for spring growth in winter-dormant evergreenforests, which is critical in understanding future responses to climatechange.more » « less
-
Solar-Induced Chlorophyll Fluorescence (SIF) can provide key information about the state of photosynthesis and offers the prospect of defining remote sensing-based estimation of Gross Primary Production (GPP). There is strong theoretical support for the link between SIF and GPP and this relationship has been empirically demonstrated using ground-based, airborne, and satellite-based SIF observations, as well as modeling. However, most evaluations have been based on monthly and annual scales, yet the GPP:SIF relations can be strongly influenced by both vegetation structure and physiology. At the monthly timescales, the structural response often dominates but short-term physiological variations can strongly impact the GPP:SIF relations. Here, we test how well SIF can predict the inter-daily variation of GPP during the growing season and under stress conditions, while taking into account the local effect of sites and abiotic conditions. We compare the accuracy of GPP predictions from SIF at different timescales (half-hourly, daily, and weekly), while evaluating effect of adding environmental variables to the relationship. We utilize observations for years 2018–2019 at 31 mid-latitudes, forested, eddy covariance (EC) flux sites in North America and Europe and use TROPOMI satellite data for SIF. Our results show that SIF is a good predictor of GPP, when accounting for inter-site variation, probably due to differences in canopy structure. Seasonally averaged leaf area index, fraction of absorbed photosynthetically active radiation (fPAR) and canopy conductance provide a predictor to the site-level effect. We show that fPAR is the main factor driving errors in the linear model at high temporal resolution. Adding water stress indicators, namely canopy conductance, to a multi-linear SIF-based GPP model provides the best improvement in the model precision at the three considered timescales, showing the importance of accounting for water stress in GPP predictions, independent of the SIF signal. SIF is a promising predictor for GPP among other remote sensing variables, but more focus should be placed on including canopy structure, and water stress effects in the relationship, especially when considering intra-seasonal, and inter- and intra-daily resolutions.more » « less
An official website of the United States government
